Inferring a Bayesian network for Content-based Image Classification
نویسندگان
چکیده
Bayesian networks are popular in the classification literature. The simplest kind of Bayesian network, i.e. naïve Bayesian network, has gained the interest of many researchers because of quick learning and inferring. However, when there are lots of classes to be inferred from a similar set of evidences, one may prefer to have a united network. In this paper we present a new method for merging naïve networks in order achieve a complete network and study the effect of this merging. The proposed method reduces the burden of learning a complete network. A simple measure is also introduced to assess the stability of the results after the combination of classifiers. The merging method is applied to the image classification problem. The results indicate that in addition to the reduced computation burden for learning a complete network, the total precision is increased and the precision alteration for each individual class is estimable using the measure.
منابع مشابه
Author gender identification from text using Bayesian Random Forest
Nowadays high usage of users from virtual environments and their connection via social networks like Facebook, Instagram, and Twitter shows the necessity of finding out shared subjects in this environment more than before. There are several applications that benefit from reliable methods for inferring age and gender of users in social media. Such applications exist across a wide area of fields,...
متن کاملObject-Oriented Method for Automatic Extraction of Road from High Resolution Satellite Images
As the information carried in a high spatial resolution image is not represented by single pixels but by meaningful image objects, which include the association of multiple pixels and their mutual relations, the object based method has become one of the most commonly used strategies for the processing of high resolution imagery. This processing comprises two fundamental and critical steps towar...
متن کاملLearning Document Image Features With SqueezeNet Convolutional Neural Network
The classification of various document images is considered an important step towards building a modern digital library or office automation system. Convolutional Neural Network (CNN) classifiers trained with backpropagation are considered to be the current state of the art model for this task. However, there are two major drawbacks for these classifiers: the huge computational power demand for...
متن کاملA Convolutional Neural Network based on Adaptive Pooling for Classification of Noisy Images
Convolutional neural network is one of the effective methods for classifying images that performs learning using convolutional, pooling and fully-connected layers. All kinds of noise disrupt the operation of this network. Noise images reduce classification accuracy and increase convolutional neural network training time. Noise is an unwanted signal that destroys the original signal. Noise chang...
متن کاملNew approach using Bayesian Network to improve content based image classification systems
This paper proposes a new approach based on augmented naive Bayes for image classification. Initially, each image is cutting in a whole of blocks. For each block, we compute a vector of descriptors. Then, we propose to carry out a classification of the vectors of descriptors to build a vector of labels for each image. Finally, we propose three variants of Bayesian Networks such as Naïve Bayesia...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007